Algebra Qualifying Exam (May 2018)

1. (10 points) Let F be a field. Show that the additive group $(F,+)$ can never be isomorphic to the multiplicative group $\left(F^{\times}, \cdot\right)$. (Hint: Consider orders of elements.)
2. (10 points) Let p be a prime and suppose K is a field of characteristic 0 such that for every proper finite extension L / K the degree is divisible by p. Show that if L / K is any finite extension of K, then $[L: K]=p^{m}$ for some $m \geq 0$. (Hint: Consider the Galois closure E / K of L and use the Sylow theorems.)
3. Let p be a prime and $\overline{\mathbb{F}}_{p}$ be an algebraic closure of the finite field \mathbb{F}_{p}. For an integer n relatively prime to p, let $\zeta_{n} \in \overline{\mathbb{F}}_{p}$ be a primitive n-th root of unity, i.e. $\zeta_{n}^{n}=1$, but $\zeta_{n}^{m} \neq 1$ for any $0<m<n$.
(a) (3 points) Show that the polynomial $x^{n}-1 \in \mathbb{F}_{p}[x]$ is separable.
(b) (5 points) Explain why the extension $\mathbb{F}_{p}\left(\zeta_{n}\right) / \mathbb{F}_{p}$ is Galois and show that there is an injective group homomorphism $\operatorname{Gal}\left(\mathbb{F}_{p}(\zeta) / \mathbb{F}_{p}\right) \hookrightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(c) (7 points) Show that $\left[\mathbb{F}_{p}\left(\zeta_{n}\right): \mathbb{F}\right]$ is equal to the order of p in $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
4. Consider the polynomial $f(x)=x^{3}-5 \in \mathbb{Q}[x]$.
(a) (8 points) Let F / \mathbb{Q} be the splitting field of $f(x)$ over \mathbb{Q}. Determine $\operatorname{Gal}(F / \mathbb{Q})$ and describe all quadratic subextensions of F / \mathbb{Q}, i.e. all subfields $\mathbb{Q} \subset K \subset F$ with $[K: \mathbb{Q}]=2$.
(b) (7 points) Show that the polynomial $f(x)$ is irreducible over $\mathbb{Q}(\sqrt{7})$ and determine $\operatorname{Gal}(L / \mathbb{Q}(\sqrt{7}))$, where L be the splitting field of $f(x)$ over $\mathbb{Q}(\sqrt{7})$.
(Recall that the discriminant of $x^{3}+p x+q$ is $D=-4 p^{3}-27 q^{2}$.)
5. (10 points) Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}$. Note that the tensor product is taken over \mathbb{Z}. (Hint: Consider the map $\left.\mu: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q},\left(q_{1}, q_{2}\right) \mapsto q_{1} q_{2}.\right)$
6. (10 points) Let p be a prime. Show that $\operatorname{Ext}_{\mathbb{Z} / p^{2} \mathbb{Z}}^{n}(\mathbb{Z} / p \mathbb{Z}, \mathbb{Z} / p \mathbb{Z}) \simeq \mathbb{Z} / p \mathbb{Z}$ for all $n \geq 0$.
