Algebra Qualifying Exam (May 2018)

- 1. (10 points) Let F be a field. Show that the additive group (F, +) can never be isomorphic to the multiplicative group (F^{\times}, \cdot) . (Hint: Consider orders of elements.)
- 2. (10 points) Let p be a prime and suppose K is a field of characteristic 0 such that for every proper finite extension L/K the degree is divisible by p. Show that if L/K is any finite extension of K, then $[L:K]=p^m$ for some $m \geq 0$. (Hint: Consider the Galois closure E/K of L and use the Sylow theorems.)
- 3. Let p be a prime and $\overline{\mathbb{F}}_p$ be an algebraic closure of the finite field \mathbb{F}_p . For an integer n relatively prime to p, let $\zeta_n \in \overline{\mathbb{F}}_p$ be a primitive n-th root of unity, i.e. $\zeta_n^n = 1$, but $\zeta_n^m \neq 1$ for any 0 < m < n.
- (a) (3 points) Show that the polynomial $x^n 1 \in \mathbb{F}_p[x]$ is separable.
- (b) (5 points) Explain why the extension $\mathbb{F}_p(\zeta_n)/\mathbb{F}_p$ is Galois and show that there is an injective group homomorphism $\operatorname{Gal}(\mathbb{F}_p(\zeta)/\mathbb{F}_p) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- (c) (7 points) Show that $[\mathbb{F}_p(\zeta_n) : \mathbb{F}]$ is equal to the order of p in $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 4. Consider the polynomial $f(x) = x^3 5 \in \mathbb{Q}[x]$.
- (a) (8 points) Let F/\mathbb{Q} be the splitting field of f(x) over \mathbb{Q} . Determine $Gal(F/\mathbb{Q})$ and describe all quadratic subextensions of F/\mathbb{Q} , i.e. all subfields $\mathbb{Q} \subset K \subset F$ with $[K:\mathbb{Q}] = 2$.
- (b) (7 points) Show that the polynomial f(x) is irreducible over $\mathbb{Q}(\sqrt{7})$ and determine $\mathrm{Gal}(L/\mathbb{Q}(\sqrt{7}))$, where L be the splitting field of f(x) over $\mathbb{Q}(\sqrt{7})$.

(Recall that the discriminant of $x^3 + px + q$ is $D = -4p^3 - 27q^2$.)

- 5. (10 points) Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}$. Note that the tensor product is taken over \mathbb{Z} . (Hint: Consider the map $\mu \colon \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$, $(q_1, q_2) \mapsto q_1 q_2$.)
- 6. (10 points) Let p be a prime. Show that $\operatorname{Ext}^n_{\mathbb{Z}/p^2\mathbb{Z}}(\mathbb{Z}/p\mathbb{Z},\mathbb{Z}/p\mathbb{Z}) \simeq \mathbb{Z}/p\mathbb{Z}$ for all $n \geq 0$.